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Motivated by the growing interest in the nanophysics and the field of quantum thermodynamics we study an
open quantum system consisting of two spatially separated two-level atoms �spins� coupled to a quantum
oscillator �resonator field mode�. There is no external driving. The spins of different energy splittings are each
linked to a heat bath with different temperature. We find that the temperature gradient imposed on the system
together with the oscillator operating as a kind of work reservoir makes this system act as a thermodynamic
machine, in particular, as a heat engine �laser�. We analyze the properties of the resulting resonator field and of
the engine functionality. For the latter problem we use recently developed definitions of heat flux and power as
well as a test, in which the resulting field is used as an input for a heat pump.
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I. INTRODUCTION

Quantum thermodynamics �1� is a growing area of re-
search, merging two important fields, quantum theory, and
thermodynamics, which represent an essential part of our
understanding of nature around us. This merging is not su-
perficial but imposed by the continuing advances of technol-
ogy and the attempts to make devices smaller and smaller.

The quantum heat engine �1� is one of those tools by
which we can test this merging. Thermodynamic machines
�2� �heat engine and heat pump� are prototype models to
apply and test thermodynamic fundamental laws. Typically
they consist of a working medium �a gas enclosed in a cyl-
inder�, and a work reservoir �acting on a movable piston or
any other mechanical degree of freedom�. The working me-
dium can alternatively be kept isolated or brought in thermal
contact with one of two heat baths at different temperatures.
The basic engine operation has four strokes, but continuous
operation is also possible �see below�.

In order to quantize the heat engine, we can either quan-
tize the working medium, or quantize the work reservoir or
quantize both. Typically, the heat baths are assumed to be
macroscopic and to have a thermal equilibrium Gibbs distri-
bution. In the seminal work of Scovil and Schulz-DuBois
�3�, a three-level maser has been analyzed as a heat engine.
Based on the Boltzman distribution of the atomic population
they showed that the efficiency is less or equal to the Carnot
efficiency �2�. Alicki �4� studied a quantum open system
weakly coupled to thermal reservoir at different temperatures
as a model of heat engine; by partitioning the energy of the
system into heat and work he obtained the Carnot inequality
for the efficiency of the heat engine. The possibility of such

an open quantum system to perform mechanical work was
originally introduced by Pusz and Wornowicz �5� by model-
ing the change in the external conditions �e.g., switching on
some external fields or moving the walls confining the space
accessible to the system� with a family of self-adjoint opera-
tors. By changing such external conditions we can transmit
energy to or from the system �apply or extract work�.

Recently, several quantum heat engines have been pro-
posed �see �6–26� and reference therein�, where many fun-
damental problems were discussed. However, a generally ac-
cepted definition of work and heat for autonomous systems
�no external driving� has not yet been reached. In this paper,
we discuss this problem by applying two recently suggested
definitions �6,7� to a our scenario. Preliminary results have
been published as a conference paper �27�. The debate on
work versus heat should be seen here in the context of the
appropriate characterization of the output laser field: how to
measure its usefulness?

II. MODEL AND ITS TIME EVOLUTION

The considered engine, Fig. 1, is an open quantum system
consisting of two spin-1/2 �atoms� A and B with different
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FIG. 1. Schematic diagram of the model. The spatially separated
two-level atoms A and B �working medium� are in contact with heat
bath Th and Tc, respectively, and coupled via a single cavity photon
mode �, the work reservoir.
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splittings �EA��EB �the quantized working medium�,
placed in a closed cavity and locally in contact with two
separate heat reservoirs at different temperature: spin A is
coupled to a hot temperature bath Th and spin B is coupled to
a cold temperature bath Tc. These reservoirs induce relax-
ation processes with a nearest neighbor selection rule �local-
site coupling�, which would bring each spin individually to a
canonical equilibrium state of temperature Th�c�.

The two spins interact through a single cavity mode �a
photon assisted interaction�, which represents the “quantum
work reservoir,” such that the difference between the energy
splitting of the two atoms is in resonance with the quantized
cavity mode. The dynamics of the matter-field system is de-
scribed by the following Hamiltonian:

ĤS = ĤA + ĤB + Ĥf + Ĥint. �1�

ĤS = �â†â +
�EA

2
�̂A

z +
�EB

2
�̂B

z + ���̂A
−�̂B

+â† + �̂A
+�̂B

−â� .

�2�

The units have been chosen such that �=1. The terms ĤA�B�

and Ĥf represent the local Hamiltonians of the atom A�B�
and the quantized cavity mode of frequency �, respectively,

while Ĥint is the interaction Hamiltonian. Here, we consider
the resonance interaction, i.e., �=�EA−�EB. The operators,
�̂i

+= �e��g�, �̂i
−= �g��e�, and �̂i

z= ��e��e�− �g��g��, i=A ,B, are
the usual raising, lowering, and the inversion operators for
atom A�B�, respectively, where �e�g�� are the energy eigen-

states of the local Hamiltonians Ĥi. They act on their respec-
tive Hilbert spaces and satisfy ��̂A�B�

+ , �̂A�B�
− �=�A�B�

z ,
��̂A�B�

z , �̂A�B�
� �= �2�A�B�

� , ��̂A�B�
i , �̂B�A�

j �=0. The operators â†

and â are the Bose creation and annihilation operators for the
quantized field mode, satisfying the commutation relations
�â , â+�=1, and � is the interaction coupling constant.

Hamiltonian �1� conserves the total number of excitations
of the atoms plus the field. This suggests a decomposition for
the system Hilbert space in the product basis states H
=�n=0

	
� Hn such that Hn �n=0

	 = 	�e ,e ;n� , �e ,g ;n� , �g ,e ;n
+1� , �g ,g ;n�
 ,n=0,1 ,2 , . . ., where �e���g�� denotes the upper
�lower� state of the atoms, and �n� is the Fock state of the
field mode with n photons.

Our open system is described by the Liouville–von Neu-
mann equation �28�,

� 
̂s�t�
�t

= − i�ĤS, 
̂s�t�� + L̂A�
̂s�t�� + L̂B�
̂s�t��

= L̂coh�
̂s�t�� + L̂D�
̂s�t�� , �3�

where 
̂s�t� is the density operator and L̂coh�
̂� is the Hamil-
tonian superoperator, which governs the coherent dynamics
of the system. The second and third Liouville superoperators
model the influence of the two heat baths �e.g., thermal pho-
tons�. In the system-environment weak coupling regime and
under Born-Markov approximation these dissipators can be
written in the well-known Lindbald form,

L̂A�B��
̂s� = �
�=�

�A�B�
� �L̂A�B�

� 
̂L̂A�B�
�†

−
1

2
	L̂A�B�

�†
L̂A�B�

� , 
̂s
� .

�4�

The braces 	,
 represent the anticommutator. The operators

L̂A�B�
� belong to the Hilbert space of the system, and for a spin

A�B� coupled to a reservoir, L̂A�B�
� = �̂A�B�

� . The positive con-
stants �� are the rates of the two damping channels, which
determine the equilibrium state of the relaxing system “atom
A�B�” and, hence, its temperature. They are related to the
Weiskopf-Wigner �29,30� decay constants A and B associ-
ated with the hot and cold reservoirs by the relations �A�B�

−

=A�B��n̄h�c�+1� and �A�B�
+ =A�B�n̄h�c�, where n̄h�c�

= �exp�
�EA�B�

kBTh�c�
�−1�−1 are the number of thermal photons in the

h�c� baths and kB is the Boltzmann constant. We will con-
sider that each atom is coupled to the relevant bath with the
same strength, so it is convenient to parametrize the atom-
bath coupling strength as

�E = �A
− + �A

+ = �B
− + �B

+ . �5�

Consequently, we have the following explicit expressions for
the rates in terms of the atom-bath coupling strength, atom’s
energy splitting, and the bath as follows �see Fig. 2�a��:

�A�B�
+ = �E

1

1 + e�h�c��EA�B�
,

�A�B�
− = �E

1

1 + e−�h�c��EA�B�
, �6�

where 1 /�h�c�=Th�c� and we set kB=1. Temperature is thus
measured in energy units. To solve Eq. �3� we convert the
operator equation into a set of coupled ordinary differential
equations using the product basis states �see Appendixes A
and B�. These are solved by the fourth-order Runge-Kutta
method. Also we use the quantum optics toolbox for MATLAB

�31�.

III. LASER ACTION

The laser principle is concerned with the creation of co-
herent light through an ensemble of atoms driven far away
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FIG. 2. �a� Population flows due to the various terms in the
master equation �3�. �b� Laser action taking place between the two
excited energy levels �e ,g� and �g ,e� separated by a frequency �.
Level �e ,g� is effectively excited at rate R, while level �g ,e� effec-
tively decays with the same rate.
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from thermal equilibrium via a continuous flux of energy
through the system �32�. In the standard laser model N two-
level atoms interact with one mode of the resonator, and to
obtain a laser action, a pump process is included to get
ground state atoms to the upper lasing level. Typically, the
atoms being regularly injected into the cavity �the cavity
mode is resonant with the atomic dipole-allowed transition�
and the pumping is either coherent, e.g., the atoms interact
with an external radiation before entering the cavity, or inco-
herent e.g., the field mode interacts with a reservoir of in-
verted atoms �negative effective temperature �33�, Tef f.

In our model, Fig. 1, the pumping process is achieved by
connecting the system to two reservoirs at different �positive�
temperatures, the states �e ,g� and �g ,e� are the upper and
lower lasing levels with occupation probabilities Peg , Pge, re-
spectively. Laser action occurs, when Peg� Pge i.e., R
= ��B

�−�−�B
�+��− ��A

�−�−�A
�+���0 �see Fig. 2�a��. One can show

that this condition is equivalent to

1 �
Th

Tc
�

�EA

�EB
. �7�

This scenario may alternatively �34� be viewed as if there
was a beam of two-level atoms �atomic reservoir� of “nega-
tive temperature” �33� Tef f, i.e., a beam, in which there are
more atoms in the excited state than in the ground state �34�,
according to a Boltzmann distribution, Fig. 2�b�, with nega-
tive Tef f,

Peg

Pge
= exp�EA − �EB

kBTef f
� = exp �

kBTef f
� , �8�

consequently, the field is amplified. On the other hand, when

1 �
Th

Tc
�

�EA

�EB
, �9�

there are more atoms in the ground state than in the excited
state according to a Boltzmann distribution with positive
temperature Tef f given by

Peg

Pge
= exp−

�EA − �EB

kBTef f
� = exp−

�

kBTef f
� . �10�

In this case the field is damped by these atoms.
Following �29,35,36�, in Appendix B we derive the equa-

tion of motion for the laser field density matrix due to the
interaction with the lasing medium. For the diagonal ele-
ments 
n;n= P�n�, which represent the probability for n pho-
tons in the field mode, we have

Ṗ�n� = �̄�1nP�n − 1� − �̄�2nP�n� − �̄�1�n + 1�P�n�

+ �̄�2�n + 1�P�n + 1� . �11�

Comparing this equation with the standard laser equation

�29,37�, we interpret the parameter �̄= �2

�E
as the effective

pumping rate, the parameter �̄�1 as the gain coefficient, �̄�2

as the effective damping rate, and �̄�1= �̄�2 as the threshold

condition for the laser. The term �̄�1�n+1�P�n� represents
the flow of probability from the �n� state to the �n+1� state
due to the emission of photons by lasing atoms initially in

the upper states: �̄�1n is the rate of stimulated emission and

�̄�1 is the spontaneous emission rate. Similarly, the term

�̄�2nP�n� represents the flow of probability from the �n�
state to the �n−1�, corresponding explanations exist for the
other terms.

IV. CHARACTERIZATION OF THE CAVITY FIELD
UNDER LASING CONDITION

In order to statistically characterize the field mode inside
the cavity, we turn to an examination of the time dependence
of the field average photon number �n�, the photon number
distribution P�n�, the second-order correlation function

g�2��t�= �â†2
â2�

�â†â�2 , the quasiprobability distribution Q-function
for the field Q���= ���
̂ f��� and the field purity �=Tr	
̂ f

2
,
where 
̂ f =TrAB	
̂s
 is the field reduced density operator.

In Figs. 3 and 4, we have taken the following parameters:
�E=0.001, �=0.1, Th=10, Tc=1, �EA=2, �EB=1.8, and ini-
tial vacuum state for the field. The average photon number
Fig. 3�a� inside the cavity increases linearly, due to the fact
that there is an amplification without damping mechanism.

FIG. 3. Heat engine: �a� Average photon number, �n�, �b� Mo-
mentary photon number distribution, P�n�, �c� Second-order corre-
lation function, g2�t�, and �d� Purity of the field mode, �. The pa-
rameters are �E=0.001, �=0.1, Th=10, Tc=1, �EA=2, and �EB

=1.8. Time “t” is in inverse energy units �104

FIG. 4. �Color online� The Q function for the output field, typi-
cal of a laser far above threshold. Same parameters as in Fig. 3.
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The second-order coherence function Fig. 3�c� indicates that
the field is slightly super-Poissonian. Figure 3�b� shows that
the photon statistics of the output is given by almost a Pois-
son distribution, which is a characteristic of a “coherent
state.” Thus, the output field has the same properties as the
far above threshold laser, while for below threshold, the out-
put would be essentially that of a black-body cavity �for a
single mode�.

It is important here to note, however, that the output in
our model has no phase “coherence,” in fact the Q-function
shown in Fig. 5 is as reported previously �see e.g., �38,39��.
It is centered on zero amplitude and its phase symmetrically
distributed, thus the state is phase diffused. The field purity is
shown in Fig. 3�d�. It decreases with time and asymptotically
will reach its minimum value. This means that the created
field state is a maximally mixed state, but this mixedness is
of a single mode field in the Fock state representation and
should be distinguished from the mixedness of a field con-
structed from a broad spectrum of modes, which would be
mixed in real space.

It was conjectured in �40� that optical coherence, i.e.,
quantum-mechanical coherence between states separated by
Bohr frequencies in the optical regime, does not exist in the
optical experiments. Also it has been argued that continuous-
variable quantum teleportation at optical frequencies has not
been achieved in �41�, because the source used �a laser� was
not “truly coherent,” Many other discussions �42–46� were
published around this subject. We will return to this point in
the following sections.

Finally, we would like to mention that the above result is
independent of the initial state of the field, as we have used
Fock state, coherent state and a thermal state as an initial
state of the field. This shows that the lasing process may be
viewed as a relaxation process �47� toward the laser output
state. This relaxation is, however, “frustrated” in the sense
that the final stationary attractor cannot be reached, the av-
erage photon number continues to increase, the momentary
field state is not a canonical �Gibbsian� state but a phase-
diffused Glauber state. The respective stationary canonical

state would have to have a negative temperature, which
could be stabilized in a system with an upper energy bound
only �see Fig. 5�.

V. THERMODYNAMIC ANALYSIS

A laser can be viewed as a continuous thermodynamic
device, which transforms heat into electromagnetic radiation
�3�. Heat may be supplied in a variety of ways, ranging from
glow discharge in cooled environments to absorption of in-
coherent light in a cold medium, or even irreversible cooling
of gases by isentropic expansion �see �47� and reference
therein�.

Thermodynamics is based on two fundamental laws. The
first law �the law of conservation of energy� reads

dE = d̄Q + d̄W , �12�

where d̄Q is the infinitesimal change in the heat and d̄W is
the infinitesimal change in the work. A differential form of
the first law can be derived by calculating the expectation
value of the energy of the respective quantum system

Ė =
d�Ĥ�

dt
=

d

dt
Tr	
̂Ĥ
 = Tr	
̇̂Ĥ
 + Tr	
̂Ḣ̂
 = Q̇ + P ,

�13�

where Q̇ is the heat current and P is the power. In the last
equality, the second identification is associated with the fact
that work done on or by a system can be performed only
through a change in the generalized coordinates �18� of the
system, which in turn gives rise to a change of the energy
spectrum.

The second law of thermodynamics, which limits our en-
gine efficiency due to the entropy constraint, can be written
as

dS = dexS + dinS � 0, �14�

where dexS is the entropy supplied to the system by its sur-
roundings and dinS is the entropy produced inside. If Pi is the
occupation probability of the quantum state i �in equilib-
rium�, the von Neumann entropy of the system is S=
−�iPi ln Pi. Therefore, a change dPi is accompanied by a
change in the entropy dS=−�i ln PidPi and, hence, the first
identification.

This suggests that for an autonomous system no work can
be done or extracted. While this holds for the whole quantum
system, more detailed investigations are required for the
characterization of the subsystem behavior.

Two different approaches will be analyzed here. First,
based on Alicki’s definition of quantum heat and work �4�,
Boukobza and Tannor �6,22� introduced a generalized defi-
nition of heat flux and power �work flux�, applicable to any
bipartite system. On the other hand, by computing the local
energy expectation values with respect to some local mea-
surement basis �LEMBAS� �7�, the authors showed that for
any quantum system there are two fundamentally different
contributions: changes in energy that do not alter the local
von Neumann entropy and changes that do. They identify the
former as work and the latter as heat.

FIG. 5. Heat engine as of Fig. 3, but with �E=0.1, �=1, and
upper energy cutoff for the photon field: The Fock-space has a finite
dimension N=10. Time “t” is in inverse energy units �103.
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VI. WORK AND HEAT ACCORDING TO REF. [6]

The rate of change of energy of the total system is given
by

ĖS =
d�ĤS�

dt
=

d

dt
Tr	
̂sĤS


= Tr	
̇̂sĤS
 = − i Tr	�Ĥint, 
̂s�ĤS
 + Tr	L̂D�
̂s�ĤS


= Tr	L̂D�
̂s�ĤS
 = Q̇h + Q̇c, �15�

where Q̇h , Q̇c are the heat currents associated with the hot
and cold reservoir. The physical interpretation of Eq. �15� is
that there is no work done on �by� the total system. The rate
of change in energy of atom A is given by

ĖA =
d�ĤA�

dt
=

d

dt
TrA	
̂AĤA
 = TrA	
̇̂AĤA
 , �16�

where 
̂A=TrBf	
̂s
 is the reduced density matrix for the atom
A. Up to this point according to the energy partitioning of
Alicki �4� and to the work definition of Pusz and Wornowicz
�5� there is also no work associated with the atom A.

Following �6� and using some trace properties �48�, we
can write Eq. �16� in the following alternative form:

ĖA = Tr	
̇̂sĤA
 , �17�

where ĤA= �ĤA � 1̂B � 1̂ f�. Using Eq. �3� in the interaction
picture we get

ĖA = − i Tr	
̂s�ĤA,Ĥint�
 + Tr	L̂A�
̂s�ĤA
 = PA + Q̇A,

�18�

where Tr	L̂B�
̂s�ĤA
=0. The first part is identified as the
power and the second part as the heat current. This is moti-
vated by the fact that the first part contains the interaction of
atom A with the field mode, which is the work reservoir, and
the second part expresses the interaction of atom A with the
heat reservoir. This identification is the main result of �6�.
Now, if the energy of a bipartite system is conserved �in the
absence of dissipation�, the energy of each subsystem is in
general time dependent, but in this scheme there is no way to
distinguish whether this is a result of an external force or
because the subsystem is part of a larger bipartite system. We
will return to these arguments in the next section.

The explicit form of the heat current and power for atom
A is

Q̇A = 2�EA��A
+PA

g − �A
−PA

e � ,

PA = i�EA� Tr	
̂��̂A
−�̂B

+â† − �̂A
+�̂B

−â�
 , �19�

where Pe
A�Pg

A� is the occupation probability of the excited
�ground� level for the atom A state. Similarly, for the atom B
we have

Q̇B = 2�EB��B
+PB

g − �B
−PB

e � ,

PB = − i�EB� Tr	
̂��̂A
−�̂B

+â† − �̂A
+�̂B

−â�
 . �20�

In general, Q̇h= Q̇A+ Q̇Vh and Q̇c= Q̇B+ Q̇Vc, where Q̇Vh�c�

=Tr	L̂A�B��
̂s�Ĥint
. However, our numerical results show

that Q̇Vh�c�=0. For the cavity field we find

Q̇f = 0,

P f = − i�� Tr	
̂s��̂A
−�̂B

+â† − �̂A
+�̂B

−â�


= − i��	��̂A
−�̂B

+â†� − ��̂A
+�̂B

−â�
 . �21�

The heat engine condition is the same as the lasing condition
Eq. �7�. Under this condition and at “steady state” we find a

heat current Q̇A�0 flowing from the hot reservoir to the

atom A and a heat current Q̇B�0 from the atom B into the
cold reservoir. These flows are accompanied by the previ-
ously mentioned amplification of the cavity field, i.e., power
pumped into the field, so the system works as a heat engine.
The second law of thermodynamics requires net non-
negative entropy production �49�,

Q̇h

Th
+

Q̇c

Tc
� 0. �22�

The efficiency for the heat engine reads

� =
Pf

Q̇h

= 1 −
Q̇c

Q̇h

= 1 −
�EB��B

+PB
g − �B

−PB
e �

�EA��A
+PA

g − �A
−PA

e �
, �23�

where we have used the conservation of energy �in steady
state�

P f + Q̇h + Q̇c = 0. �24�

Substituting Eq. �22� into Eq. �23� we get the Carnot inequal-
ity for the engine efficiency,

� � 1 −
Tc

Th
. �25�

Our numerical results confirm that the engine efficiency is
always below the Carnot limit.

VII. WORK AND HEAT ACCORDING TO LEMBAS
PRINCIPLE

The analysis in the previous section has completely been
based on �6�. In so doing, we have ignored the conventional
view of classical thermodynamics for a work source, which
should have a constant entropy: This is not true in the present
case �see Fig. 3�d��, and a similar result has been obtained in
�6�. It is thus not sufficient to have the power defined via the
Hamiltonian superoperator and heat flux defined via the dis-
sipative superoperator to guarantee the corresponding ther-
modynamic concepts. Also claiming that there is no way of
distinguishing whether the energy change of a subsystem
within a bipartite system is a result of external forcing or
because of the subsystem is part of a larger bipartite system,
seems unjustified.
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Along the line of �7� we now analyze the energy change
of the field, taking the partial trace of Eq. �3� over the atomic
system �AB� to get

� 
̂ f

�t
= − i�Ĥf + Ĥf

eff, 
̂ f� + L̂inc
�f� �
̂� , �26�

where

Ĥf
eff = TrAB	Ĥint�
̂AB � 1̂ f�
 ,

L̂inc
�f� �
̂� = − i TrAB	�Ĥint,ĈABf�
 ,


̂s = 
̂AB � 
̂ f + ĈABf . �27�

Here ĈABf is the operator describing the correlations between
matter and field. The reduced dynamics of the field specified
by Eq. �26� is in a form that enables us to split its energy
change into a part that does not alter the local von Neumann
entropy and a part that does. It is easy to verify that the

dynamics generated by �Ĥint , ĈABf� cannot result in unitary
dynamics, but will always change the local von Neumann
entropy. We realize that for the first part of the density op-
erator in the split form the factorization approximation �50�
is exact. So we write

TrAB	�Ĥint, 
̂AB � 
̂ f�
 = �Ĥf
eff, 
̂ f� . �28�

Splitting the local energy change in this way is one part of
the �LEMBAS� principle; the second feature is related to the
fact that heat and work are defined by a process only, which
in turn should be verified by observations. Observations are
basis-dependent; here we choose the energy basis of the field
�f� as the measurement basis, so that only the parts of the

total effective Hamiltonian Ĥf
eff that commute with Ĥf would

contribute to the described type of experiment �7� �testing the

effective local energy changes�. By expanding Ĥf
eff in the

transition operator basis defined by the energy eigenstates of
the field �n�,

Ĥf
eff = �

jk

�Ĥf
eff� jk�j��k� , �29�

we can decompose Ĥf
eff into two parts,

Ĥf
eff = Ĥf1

eff + Ĥf2
eff, �30�

such that �Ĥf1
eff , Ĥf�=0 and �Ĥf2

eff , Ĥf��0, where

Ĥf1
eff = �

j j

�Ĥf
eff� j j�j��j� ,

Ĥf2
eff = Ĥf

eff − Ĥf1
eff. �31�

Now if a measurement of the field energy is performed in the

energy eigenbasis of Ĥf, the corresponding operator should
be

Ĥf� = Ĥf + Ĥf1
eff. �32�

Hence, the average change in the energy of the field is given
by

Ėf� =
d�Ĥf��

dt
=

d

dt
Trf	
̂ fĤf�
 = Trf	
̇̂ fĤf� + 
̂ fḢ̂f�
 . �33�

Finally, we get the following expression for the power

Pf� = − i��	��̂A
−�̂B

+��â†� − ��̂A
+�̂B

−��â�
 . �34�

Using this �LEMBAS� formula, we find numerically that for
various initial field states the power is identically zero except
for starting from a coherent state. In this latter case a small
amount of work �due to the initial coherency� shows up,
which quickly disappears as the coherency decays. This be-
havior may be related to what has been found in �17,51�.
Therefore, the �LEMBAS� formula tells us that the energy,
which the field gains is heat not work.

The different results of the two approaches can be under-
stood, as follows: in �6� we decide to consider the energy,
which the field gains as work or useful energy, regardless of
whether this energy gain is combined with entropy or not as
long as the field is not directly linked to any heat reservoir.
On the other hand, in �7�, we get the effective dynamics of
the field and stick with the classical thermodynamic point of
view and identify work as that part of energy gained by the
field, which does not correlate with a change in entropy. One
should note the similarity between the two expressions for
the power, Eqs. �21� and �34�, which become identical, if

ĈABf =0, i.e., under the semiclassical or/and mean-field ap-
proximation. In former case we can consider each part of the
engine “atoms and field” to behave as a classical driver for
the other �22,52–54�, e.g., by replacing the quantized field
mode with a classical field.

The discrepancy between the two approaches, suggests
that we need an additional test, whether or not that cavity
field energy should count as useful work. As such a test we
propose the heat pump operation.

VIII. HEAT PUMP OPERATION

A heat pump �see Fig. 6� is a device that transfers heat
from a low-temperature reservoir to a high-temperature res-
ervoir, i.e., against the temperature gradient, by applying ex-
ternal work. As the input of our machine we will use states
similar to the outputs of our heat engine, namely, a single

FIG. 6. �Color online� Schematic diagram of our model Fig. 1
working as a heat engine.

YOUSSEF, MAHLER, AND OBADA PHYSICAL REVIEW E 80, 061129 �2009�

061129-6



mode coherent state, thermal state, or a Fock state cavity
field, respectively. In Fig. 7 we take the following parameters
�E=0.001, �=0.1, Th=10, Tc=5, �EA=8, �EB=1, and ini-
tial Fock state �5� �also an initial coherent and thermal state
with same average photon number shows almost the same
behavior�. Under the condition of positive effective tempera-
ture Peg� Pge or, equivalently,

�EA

�EB
�

TA

TB
�1, and at a steady

state we have Q̇A�0, Q̇B�0, i.e., there is, indeed, a heat current
from the cold reservoir to the hot reservoir, and the cavity
field relaxes to an effective temperature given by

Tef f =
− ��

ln� Peg

Pge
�

� 0. �35�

The energy inside the cavity shows a continuous decrease
toward a low energy equivalent to the effective temperature
�Eq. �35�� �see Fig. 7�a��. The second-order correlation func-
tion Fig. 7�c� indicates that asymptotically the field has ther-
mal character. Also Fig. 7�b� shows that the photon statistics
of the output is given by almost a Gaussian distribution,
which is characteristic of a “thermal state.” Therefore, the
initial photon field operates as “useful work,” irrespective of
it being coherent or thermal. We remark that the entropy of
the phase diffused Glauber state is smaller than that of the
thermal state with the same energy.

It should be noted here that the link to the two baths
establishes an appropriate population density of each atom
and governs the occupation probabilities. The incoming ra-
diation which is in resonance with the transition between the
lasing levels change these occupation probabilities in such
way that atom �A� looses energy to the hot bath and atom �B�
accepts energy from the cold bath in order to maintain the
population density required by each bath. This picture of a
heat transfer against the temperature gradient relies on the
selective coupling and not on the nature of the energy flow
from the field �heat�.

For further clarification we will simplify our model in two
steps. In a first step we will reduce our model to a three-level

quantum heat engine �3�. This model has been extensively
studied �10,11,22,54�. Here, we will apply this model to
compare two different heat pump scenarios based on fre-
quency selective coupling: one making use of a cavity field
as input �A� and a second one �B�, for which the cavity field
is replaced by a third heat bath.

A. Cavity field as input

We consider a three-level system interacting resonantly
with one quantized cavity mode and two thermal reservoirs
as schematically shown in Fig. 8. This model is qualitatively
equivalent to the two-spin model as discussed before. In the
interaction picture the system is described by the following
Liouville–von Neumann equation,

� 
̂s�t�
�t

= − i�Ĥint, 
̂s�t�� + L̂h�
̂s�t�� + L̂c�
̂s�t�� . �36�

The Hamiltonian part of the Liouvillian is given by

Ĥint = ���̂21 � â† + �̂21
†

� â� . �37�

The above Hamiltonian is the interaction part of the standard
Jaynes-Cummings model �55� of a single two-level atom in-
teracting with a single-mode field, where the operators â†

and â are the Bose creation and annihilation operators for the
field mode, �21= �2��1� is the atomic transition operator, and
� is the matter-field coupling constant. The other two parts

L̂h�
̂s� and L̂c�
̂s� are the dissipative hot and cold Lindblad
superoperators, respectively,

L̂h�
̂s� = �h
−���̂01
̂s,�̂01

† � + ��̂01, 
̂s�̂01
† �� + �h

+���̂01
† 
̂s,�̂01�

+ ��̂01
† , 
̂s�̂01�� ,

L̂c�
̂s� = �c
−���̂02
̂s,�̂02

† � + ��̂02
̂s�̂02
† �� + �c

+���̂02
† 
̂s,�̂02�

+ ��̂02
† , 
̂s�̂02�� . �38�

The hot bath Th couples to the transition between the excited
level �1� and the ground level �0�. The cold bath Tc couples to
the transition between the intermediate level �2� and the
ground level �0�. Following Sec. II, we define the atom-bath
coupling constants �E to be the same for the two baths,
namely,

�E = �h
− + �h

+ = �c
− + �c

+, �39�

so we have

FIG. 7. Heat pump: the cavity field state as of Fig. 3 but for
�E=0.001, �=0.1, Th=10, Tc=5, �EA=8, and �EB=1.

E�

E�

�

Th

Tc

Cavity field

|1>

|2>

|0>

FIG. 8. �Color online� Three level system interacting with two
heat reservoirs �hot and cold� and a quantized cavity mode.
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�h�c�
+ = �E

1

1 + e�h�c��Eh�c�
,

�h�c�
− = �E

1

1 + e−�h�c��Eh�c�
, �40�

where �Eh�c�=E1�2�−E0. If we choose the parameters such
that

1 �
Th

Tc
�

�Eh

�Ec
, �41�

the results of �22� are obtained, the field is amplified and we
have a heat engine process. On the other hand, when

1 �
Th

Tc
�

�Eh

�Ec
, �42�

the field is damped and we have the heat pump process,
which we will discuss here. Along the same line of Sec. V
we get the following expression of the heat currents:

Q̇h = 2�Eh��h
+P0 − �h

−P1� ,

Q̇c = 2�Ec��c
+P0 − �c

−P2� . �43�

Figures 9–11 show the corresponding heat currents Qh ,Qc
between the two baths and the three-level system. A positive
heat current indicates that the current is from the bath to the
three-level system. The three-level occupation probabilities
P1 and P2 for the excited and intermediate levels, respec-

tively, are also shown. We find that whenever the initial pho-
ton number �Fock state� or the average photon number
�Glauber state, thermal state, phase-diffused Glauber state, or
any single mode cavity field� is larger than �nst�, there is a
heat current from the cold bath to the hot bath �heat pump
process�, and if it is less than �nst�, the direction of currents is
reversed. Here, �nst� is the stationary average photon number
of the field given by �nst�= �

P2

P1
−1�−1. This is the average

photon number corresponding to a thermal state with tem-
perature
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FIG. 9. �a� Level occupations, Pi, �b� average photon number,
�n�, and �c� heat currents, Qi, for the three-level model. The initial
field is in a Fock state with photon number n=2, the atom is ini-
tially in the excited level, Th=10, Tc=8, E1=6, E2=2, and E0=1.
There is a short-time bouncing toward �n�=2.6. Time is in inverse
energy units �103.
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FIG. 10. Same as Fig. 9, but with the field initially in a Fock
state with n=4. There is a short-time bouncing toward �n�=4.5.
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FIG. 11. Same as Fig. 9, but with the field initially in a Glauber
state with average photon number �n�=0.001.
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Tef f =
− � f

ln� P1

P2
�

. �44�

For the parameters used in the previous figures �nst�=2.197.
This indicates that this stationary average photon number
�nst� is the threshold for the phase-diffused Glauber state and
for any other single mode input field. The direction of cur-
rents are reversed not only when we let the average photon
number within a Glauber state go to zero, Fig. 11, but also
for any single mode cavity field state with average photon
number less than �nst�. Glauber states with �nst�=2,4 show a
relaxation behavior virtually identical with that of the corre-
sponding Fock states.

B. Auxiliary bath as input

Now we take the same three-levels system, but replace the
photon field connecting the excited state �1� with the inter-
mediate �2� level by a third auxiliary bath Te. The system is
governed by the following master equation in the interaction
picture,

� 
̂s�t�
�t

= L̂e�
̂s�t�� + L̂h�
̂s�t�� + L̂c�
̂s�t�� . �45�

L̂e�
̂s� is the third bath Lindblad superoperator,

L̂e�
̂s� = �e
−���̂21
̂s,�̂21

† � + ��̂21, 
̂s�̂21
† �� + �e

+���̂21
† 
̂s,�̂21�

+ ��̂21
† , 
̂s�̂21�� . �46�

Figures 12 and 13 show the resulting heat currents Qh, Qc,
and Qe between the three baths and the three-level system,
the occupation probabilities P1, P2, and P0 for the excited,
intermediate, and ground states, respectively. We distinguish
the following two cases.

Case �1�—whenever Te�Tef f, there is a heat current from
the bath Te� , Qe�0� to the three-level system, from the bath
Tc� , Qc�0� to the three-level system, and from the three-
level to the bath Th� , Qh�0� �see Fig. 12�.

Case �2�—whenever Te�Tef f, there is a heat current from
the bath Th� , Qh�0� to the three-level system, from the
three-level to the bath Tc� , Qc�0�, and to the bath Te� ,
Qe�0� �see Fig. 13�. The third bath can thus drive the heat
pump operation, quite similar to the incoherent Glauber state
studied previously.

What can be concluded from these results? Obviously, for
all those models considered, the directionality of energy
flows is intimately related to frequency-selective couplings
rather than to the conventional notions of heat versus work.
For an additional characterization of the underlying process
the LEMBAS-definitions appear to be preferable, as they re-
fer to the local entropy balance in a most transparent way.

IX. SUMMARY AND CONCLUSIONS

We have studied an open two-atom scenario internally
coupled by a resonant cavity photon field and externally to
two noninteracting heat baths at different temperatures. Our
two-level two atom model is functionally equivalent to a
single three-level center; however, the composite nature of
the former allows a spatial separation and thus should sim-
plify the frequency selective coupling to the two different
heat baths, Th and Tc �at opposite ends of the cavity�.

The system can operate as a laser or as a heat pump. We
have carefully characterized the resulting cavity field under
lasing condition. It is a single frequency, but basically inco-
herent �phase-diffused Glauber� state. As previously argued
by Molmer, such an incoherent field should be indistinguish-
able from a coherent state with respect to standard quantum
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FIG. 12. �a� Level occupations, Pi, and �b� heat currents, Qi, for
the three-level–three-bath heat engine model. Th=10, Tc=8, E1=6,
E2=2, E0=1, and Te=50�Tef f =10.667. Time is in inverse energy
units �103.
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optical experiments. Nevertheless, a more detailed analysis
in terms of the “usefulness“ of this photon field in terms of
thermodynamic considerations seems highly desirable.

The splitting of energy change into work and heat applies
to the respective process involved, not to any momentary
state as such. Here, we have compared two recently sug-
gested definitions. Most remarkably we found that these two
approaches give completely different results: According to
LEMBAS, the energy transfer between matter �atom pair
A-B� and field should be heat only, not work. While in the
alternative method due to Boukobza and Tannor that energy
transfer would have to count as work—despite the accompa-
nying change of entropy.

This ambiguity has finally led us to supplement our inves-
tigations by a heat pump scenario, in which the above laser
output states would have to show their respective work value
as input. We verified that also this heat pump functionality
does not depend on coherence; i.e., the Glauber and the
phase-diffused Glauber states, e.g., work equally well. In our
attempt to locate the essential reasons for that unexpected
behavior we further simplified our original model in two
steps: based on a reduced three-level model, we found that
for such a heat pump operation the single frequency photon
field could even be substituted by a simple heat bath of a
temperature Te above a certain threshold temperature Tef f
combined with frequency-selective coupling. This coupling
is nonergodic in the sense that relaxation depends on the
initial preparation. In the case of our full original model the
frequency selective coupling operates like a kind of switch
between the cavity field and the two external heat baths. It is
this structure—alien to any classical machinery—which
guarantees the desired functionality. What remains from ther-
modynamics are the underlying relaxation phenomena. Be-
yond that notion thermodynamic concepts can become am-
biguous and should be used with care.
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APPENDIX A: DENSITY MATRIX ELEMENTS
EQUATIONS IN THE ATOM-FOCK BASIS

In this appendix we convert operator �3� into an infinite
set of coupled ordinary differential equations by taking ma-
trix elements with respect to the appropriate basis. Let �n�,
n=0,1 ,2 , . . ., be a Fock photon number basis and �� ,��,
����=e ,g, be the states of the atoms A and B being in the
state � ,�. Using this basis and the following notation �we
will drop the subscript s when referring to the elements of
system density operator�:


̇
��;�̃�̃

n;m
= �n,�,��
̇̂s�t��m,�̃,�̃� . �A1�

Equation �3� produces the following set of density matrix
elements equations


̇ee;ee
n;m = 2�A

�+�
ge;ge
n;m + 2�B

�+�
eg;eg
n;m − 2��A

�−� + �B
�−��
ee;ee

n;m ,

�A2�


̇eg;eg
n,m = − i��n + 1
ge;eg

n+1;m + i��m + 1
eg;ge
n;m+1 − 2�A

�−�
eg;eg
n;m

+ 2�A
�+�
gg;gg

n;m + 2�B
�−�
ee;ee

n;m − 2�B
�+�
eg;eg

n;m , �A3�


̇ge;ge
n+1;m+1 = − i��n + 1
eg;eg

n;m+1 + i��m + 1
ge;eg
n+1;m + 2�A

�−�
ee;ee
n+1,m+1

− 2�A
�+�
ge;ge

n+1;m+1 − 2�B
�−�
ge;ge

n+1;m+1 + 2�B
�+�
gg;gg

n+1;m+1,

�A4�


̇gg;gg
n;m = 2�A

�−�
eg;eg
n;m + 2�B

�−�
ge;ge
n;m − 2��A

�+� + �B
�+��
gg;gg

n;m ,

�A5�


̇ee;eg
n;m = i��m + 1
ee;ge

n;m+1 − 2�A
�−�
ee;eg

n;m + 2�A
�+�
ge;gg

n;m − �B
�−�
ee;eg

n;m

− �B
�+�
ee;eg

n;m , �A6�


̇ee;ge
n;m+1 = i��m + 1
ee;eg

n;m − �A
�−�
ee;ge

n;m+1 − �A
�+�
eg;ge

n;m+1 − 2�B
�−�
ee;ge

n;m+1

+ 2�B
�+�
eg;gg

n;m+1, �A7�


̇ee;gg
n;m = − ��A

�−� + �B
�−� + �A

�+� + �B
�+��
ee;gg

n;m , �A8�


̇eg;ge
n;m+1 = − i��n + 1
ge;ge

n+1;m+1 + i��m + 1
eg;eg
n;m − �A

�−�
eg;ge
n;m+1

− �A
�+�
eg;ge

n;m+1 − �B
�−�
eg;ge

n;m+1 − �B
�+�
eg;ge

n;m+1, �A9�


̇eg;gg
n;m = − i��n + 1
ge;gg

n+1;m − �A
�−�
eg;gg

n;m − �A
�+�
eg;gg

n;m + 2�B
�−�
ee;ge

n;m

− 2�B
�+�
eg;gg

n;m , �A10�


̇ge;gg
n+1;m = − i��n + 1
eg;gg

n;m + 2�A
�−�
ee;eg

n+1;m − �2�A
�+� + �B

�−�

+ �B
�+��
ge;gg

n+1;m. �A11�

APPENDIX B: LASER EQUATION

The equation of motion for the laser field density matrix
due to the interaction with active lasing medium �the two
atoms� and the pumping mechanism is given by taking the
trace over the atomic basis 	�e ,e� , �e ,g� , �g ,e� , �g ,g�
 of the
atom-field density matrix �3�,


̇ f
n,m = �n�
̇ f�m� = �n�Tratoms�
̇̂s�t���m�

= − i�TrAB	�ĤS, 
̂s�t��
�n,m

+ �TrAB	L̂D�
̂s�t��
�n,m

= �
̇ f
n,m�gain + �
̇ f

n,m�loss. �B1�

The second part is identically zero, since this term is only
directly affected by the atomic system. Therefore, we have


̇ f
n,m = − i�	�n
eg;ge

n−1;m + �n + 1
ge;eg
n+1;m − �m + 1
eg;ge

n;m+1

− �m
ge;eg
n;m−1
 . �B2�

The equations of motion for the relevant density matrix ele-
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ments are the same set of equations as listed in Appendix A.
In addition we have the following trivial equation:


 f
n;m = �n�TrAB	
̂s�t�
�m� = 
ee;ee

n;m + 
eg;eg
n;m + 
ge;ge

n;m + 
gg;gg
n;m .

�B3�

This is all we need to derive the laser equation. The steady
state solutions to Eqs. �A2� and �A5� are


ee;ee
n;m =

�A
�+�

�AB
�−�
ge;ge

n;m +
�B

�+�

�AB
�−�
eg;eg

n;m , �B4�


gg;gg
n;m =

�A
�−�

�AB
�+�
eg;eg

n;m +
�B

�−�

�AB
�+�
ge;ge

n;m , �B5�

where

�AB
�+� = ��A

�+� + �B
�+�� ,

�AB
�−� = ��A

�−� + �B
�−�� . �B6�

Substituting from Eqs. �B5� and �B4� into Eq. �B3� we get


 f
n;m = A
eg;eg

n;m + B
ge;ge
n;m , �B7�

where

A =
�A

�−��AB
�−� + �B

�+��AB
�+�

�AB
�−��AB

�+� + 1,

B =
�B

�−��AB
�−� + �A

�+��AB
�+�

�AB
�−��AB

�+� + 1. �B8�

Substituting Eqs. �B5� and �B4� into Eq. �A3� we get


̇eg;eg
n,m = − i��n + 1
ge;eg

n+1;m + i��m + 1
eg;ge
n;m+1 + M1
eg;eg

n;m

+ N1
ge;ge
n;m , �B9�

where

M1 =
2�B

�−��B
�+��AB

�+� + 2�A
�+��A

�−��AB
�−� − �1

�AB
�−��AB

�+� ,

N1 =
2�B

�−��A
�+��AB

�+� + 2�A
�+��B

�−��AB
�−�

�AB
�−��AB

�+� ,

�1 = 2�AB
�−��AB

�+���A
�−� + �B

�+�� . �B10�

Using Eq. �B7� to eliminate 
ge;ge
n;m in Eq. �B9� we get


̇eg;eg
n,m = − i��n + 1
ge;eg

n+1;m + i��m + 1
eg;ge
n;m+1

+ �M1B − N1A

B
�
eg;eg

n;m +
N1

B

n;m. �B11�

The solution of Eq. �A9� at steady state is given by


eg;ge
n;m+1 =

i�

2�E
��m + 1
eg;eg

n;m − �n + 1
ge;ge
n+1;m+1� . �B12�

Substituting Eq. �B12� into Eq. �B11�, solving for steady
state by setting �
̇eg;eg

n,m =0� and considering only the diagonal
elements �n=m�, we have the following equation:


eg;eg
n,n =

N1

N1A − M1B

 f

n;n +
B�̄�n + 1�

�N1A − M1B�
�
eg;eg

n,n − 
ge;ge
n+1,n+1� .

�B13�

Following a similar procedure and using Eqs. �B4�, �B5�,
�B7�, and �B12� as well as Eq. �A4� we find


ge;ge
n+1,n+1 =

N2

N2B − M2A

 f

n+1;n+1 +
A�̄�n + 1�

�N2B − M2A�
�
eg;eg

n,n

− 
ge;ge
n+1,n+1� , �B14�

where

M2 =
2�A

�−��A
�+��AB

�+� + 2�B
�+��B

�−��AB
�−� − �2

�AB
�−��AB

�+� ,

N2 =
2�A

�−��B
�+��AB

�+� + 2�A
�−��B

�+��AB
�−�

�AB
�−��AB

�+� ,

�2 = 2�AB
�−��AB

�+���A
�+� + �B

�−�� ,

�̄ =
�2

�E
. �B15�

From Eqs. �B13� and �B14� we get


eg;eg
n,n − 
ge;ge

n+1,n+1 = �1
 f
n,n − �2
 f

n+1,n+1, �B16�

where

�1 =
N1�N2B − M2A�

�N1A − M1B��N2B − M2A� + �3
,

�2 =
N2�N1A − M1B�

�N1A − M1B��N2B − M2A� + �3
,

�3 = �̄�n + 1�	B�N2B − M2A� + A�N1A − M1B�
 .

Substituting Eq. �B16� into Eq. �B12�


eg;ge
n;n+1 =

i��n + 1

2�E
��1
n;n − �2
n+1;n+1� . �B17�

Substituting this equation into Eq. �B2� and considering the
diagonal elements �n=m� we get the required laser equation,

Ṗ�n� = 
̇ f
n;n = �̄�1nP�n − 1� − �̄�2nP�n� − �̄�1�n + 1�P�n�

+ �̄�2�n + 1�P�n + 1� .

Here P�n� is the probability of having n photons in the field
at a given time.
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